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Abstract: Scaling bioprocesses remains a major challenge. Since it is physically impossible to increase
all process parameters equally, a suitable scale-up strategy must be selected for a successful bioprocess.
One of the most widely used criteria when scaling up bioprocesses is the specific power input. How-
ever, this represents only an average value. This study aims to determine the Kolmogorov length scale
distribution by means of computational fluid dynamics (CFD) and to use it as an alternative scale-up
criterion for geometrically non-similar bioreactors for the first time. In order to obtain a comparable
Kolmogorov length scale distribution, an automated geometry and process parameter optimization
was carried out using the open-source tools OpenFOAM and DAKOTA. The Kolmogorov–Smirnov
test statistic was used for optimization. A HEK293-F cell expansion (batch mode) from benchtop
(Infors Minifors 2 with 4 L working volume) to pilot scale (D-DCU from Sartorius with 30 L working
volume) was carried out. As a reference cultivation, the classical scale-up approach with constant
specific power input (233 W m−3) was used, where a maximum viable cell density (VCDmax) of
5.02 · 106 cells mL−1 was achieved (VCDmax at laboratory scale 5.77 · 106 cells mL−1). Through the
automated optimization of the stirrer geometry (three parameters), position and speed, comparable
cultivation results were achieved as in the small scale with a maximum VCD of 5.60 · 106 cells mL−1.
In addition, even on the pilot scale, cell aggregate size distribution was seen to strictly follow a geomet-
ric distribution and can be predicted with the help of CFD with the previously published correlation.

Keywords: biochemical engineering; computational fluid dynamics (CFD); energy dissipation rate;
HEK293; hydrodynamic stress; Kolmogorov length scale; open-source; optimization; scale-up

1. Introduction

Biopharmaceuticals are a multi-billion-dollar business with a continuously increasing
market value [1]. The production of such biopharmaceuticals traditionally takes place
in stirred bioreactors on a cubic meter scale [2]. Even though process intensification is
an important market trend, the challenge of transferring the optimized bioprocess from
laboratory scale to production scale remains. Scaling up bioreactors is considered one
of the biggest challenges [3], and there are various ways in which scale transfer can take
place. Typically, scale-independent variables such as pH, dissolved oxygen concentration
(DO), temperature and inoculation density are kept constant during scale-up. Ideally,
geometrically similar systems are used for scaling up, as they allow for similar conditions,
which in practice is not always possible. As Kaiser et al. [4] and Böhm et al. [5] demonstrated
in their studies, it is physically impossible to scale up all process parameters equally.
Therefore, typically one or more scale-up criteria are defined. Classical scale-up criteria
are specific power input P/V, volumetric oxygen mass transfer coefficient kLa, mixing
time ΘM, tip speed vtip, superficial gas velocity vg and the Reynolds number Re [6–10].
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Interested readers will find a detailed overview of scale-up criteria used in Neubauer and
Junne [8] and Löffelholz et al. [10]. Regardless of the frequent and often successful use of
these simple scale transfer approaches, some limitations exist [7]. The choice of bioreactors
is enormous and exact geometric similarity is rarely given [11]. Different geometries lead
to varying flow patterns and mixing regimes in the vessels for the same power inputs,
which can be accounted for by the different distribution profiles of the local turbulent
energy dissipation rates [12]. Furthermore, the higher heterogeneity at the production scale
leads to higher cell-to-cell variability, which cannot always be represented with sufficient
accuracy in scale-down models [13].

However, there are also more sophisticated alternatives, mostly used in conjunction with
computational fluid dynamics (CFD). For example, Haringa [14] used CFD to model the view
of the cell with his lifeline analysis, which can also be used for scale-up. Villiger et al. [15]
used maximum hydrodynamic stress as a scale-up criterion in addition to the mixing time and
volumetric oxygen mass transfer coefficient. Li et al. [16] defined a three-dimensional shear space
consisting of shear strain rate in the impeller zone, shear strain rate in the tank bulk zone and
the overall average shear strain rate at which the two systems should be located. Böhm et al. [5]
recommend the consideration of the impeller swept volume Vl respectively the resulting energy
dissipation circulation function (EDCF). The EDCF, introduced by Jüsten et al. [17], is a mixing
parameter originally defined according to Equation (1) where tc corresponds to the circulation
time. However, there are different ways of determining and calculating the EDCF. A detailed
overview is provided by Böhm et al. [5] and Esperança et al. [18].

EDCF =
P

Vl · tc
(1)

Nevertheless, the specific power input is the most frequently used scale-up crite-
rion [8,9]. This may be due to the fact that homogenization, dispersion of gas bubbles and
suspension of the cells depend on the specific power input and that the specific power
input is comparatively easy to determine. The specific power input can be determined
experimentally in various ways, whereby the torque measurement (Equation (2)) is rec-
ommended by the DECHEMA expert group for single-use technology and is used most
frequently [19]. M corresponds to the torque, N to the stirrer speed and V to the liquid
volume. This method is both operatively and skill-wise less demanding than the method
used by Villiger et al. [15] to determine the maximum hydrodynamic stress.

P/V =
2 · π · N ·M

V
= ε̄ · ρ (2)

Furthermore, the specific power input can be estimated using literature values and
empirical formulae, or calculated using CFD [20]. However, the specific power input is
only an average value without any indication of variability in the system. In contrast,
hydrodynamic heterogeneity Φ is defined as the ratio of maximum εmax to mean ε̄ energy
dissipation rate (Equation (3)) [21]. An overview of stirred systems can be found in Zhou
and Kresta [22], and for different types of bioreactors in Seidel et al. [23]. If not only
the mean value P/V but also the hydrodynamic heterogeneity is considered as a type of
variance measure, the system can be characterized more precisely. However, it must be
taken into account that the maximum energy dissipation rate εmax is difficult to measure,
since it is the maximum directly at the stirrer [5].

Φ =
εmax

ε̄
(3)

Freiberger et al. [24] went one step further and looked not only at the maximum
and average values or their ratio Φ, but at the entire energy dissipation rate distribution
comparing two bioreactors on the same scale. Johnson et al. [25] studied the Kolmogorov
length scale distribution λk for five different bioreactors from 200 L to 15,000 L and found
that only with the same stirrers and number of baffles can a similar Kolmogorov length
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scale distribution be obtained for different working volumes. The Kolmogorov length scale
λk describes the smallest vortices that are formed before they dissipate into heat and is
a function of the energy dissipation rate ε and the kinematic viscosity ν (Equation (4)).
Various authors describe that cell damage is likely if the Kolmogorov length scale is equal
to or smaller than the cells to be cultivated [15,26–28].

λk =

(
ν3

ε

) 1
4

(4)

Our hypothesis is that similar Kolmogorov length scale distributions lead to compara-
ble growth of mammalian cell cultures such as human embryonic kidney cells (HEK293)
and can thus be used as a scale-up criterion. The aim of this study is to develop a method
that, based on CFD, automatically optimizes stirrer geometry, position and speed in order
to achieve a similar energy dissipation rate distribution, and therefore Kolmogorov length
scale distribution, in a geometrically dissimilar system that allows for a successful scale-up
and comparable cell growth. The method will be implemented using open-source resources
from optimization to CFD simulations and evaluation.

Shape optimization with the help of CFD is a widely used strategy, especially in
optimizing aerospace foils [29,30]. Furthermore, this method is also used to optimize
wind turbines [31,32], static mixers [33], pumps [34,35] and other equipment [36].
Both Hoseini et al. [37] and Wu et al. [38] have studied stirrer optimization in stirred
tanks, although their focus was neither an open-source nor a biotechnological applica-
tion. Wu et al. [38] carried out a multi-objective optimization in which mixing time
and specific power input were to be minimized. Jossen et al. [39] dealt with stirrer
optimization for bioreactors, whereby only a primitive optimization approach was
used. Nine CFD simulations were carried out and the optimum was selected from
these simulations.

Because CFD simulations are both time and computationally intensive, a surrogate-
based optimization (SBO) is typically preferred [34,40]. Here, the design space is investi-
gated using design and analysis of computer experiments (DACEs) and a surrogate model
(also known as response surface model (RSM)) is created. Latin hypercube sampling (LHS)
is commonly used for these types of experiments [36,41–43]. Alternatively, a random
or regular grid sampling can be applied [44]. Based on the surrogate model, the actual
optimization is then carried out, whereby the surrogate model and optimization algorithm
differ depending on the problem under investigation and the optimization objective.

The optimization objective depends on the bioprocess and thus on the needs of the
used cells. After Chinese hamster ovary (CHO), HEK293 cells are among the most widely
used mammalian cell cultures for the production of biopharmaceuticals [26,45,46]. HEK293
cells are used to produce recombinant proteins, viral vectors and vaccines [47–50]. It should be
noted that HEK293 cells grow adherently, such as HEK293-E and HEK293-T, or in suspension,
such as HEK293-H and HEK293-F, with only the latter being considered here [51,52]. HEK293
cells growing in suspension have a maximum specific growth rate between 0.020 h−1 and
0.036 h−1 [53–57] and typical cell diameters from 14 µm to 16 µm [58–60]. In Seidel et al. [26],
cell growth of HEK FreeStyleTM 293-F suspension cells was improved by the authors at a
laboratory scale by adjusting the hydrodynamic stress. This optimized process at 4 L scale
serves as a baseline for the scale-up method proposed in this article. To verify the results,
the data were compared with cultivations in which the specific power input was used as a
scale-up criterion. The reason for choosing this criterion is that several authors have already
shown (or at least proposed) that the use of this criterion has worked for geometrically similar
bioreactors and HEK293 cells [61–64].

2. Materials and Methods

In Seidel et al. [26], the authors showed that HEK FreeStyleTM 293-F cells can be
cultivated with a higher specific power input (233 W m−3) than typically stated in the
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literature (≈60 W m−3) and to yield 24% higher maximum viable cell densities (VCDmax).
The cultivation optimized in Seidel et al. [26] in the Minifors 2 bioreactor from Infors AG
(Bottmingen, Switzerland) with 4 L working volume serves as the basis for the automated
scale-up concept presented here (Figure 1A). These CFD simulations were validated using
particle image velocimetry (PIV) and literature data. Figure 1B shows the new scale-up
method proposed here, in which a similar Kolmogorov length scale distribution is achieved
by stirrer optimization. The Kolmogorov–Smirnov (KS) test, which compares the cumula-
tive distribution functions (CDF) of the Kolmogorov scale length distribution, was used as
the optimization criterion. The scale-up bioreactor was intentionally changed from a cell
culture bioreactor to a system that is rather atypical for mammalian cell cultures. However,
there are now some companies that successfully cultivate mammalian cells in bioreactors
that they also use for processes with microorganisms. The 30 L D-DCU bioreactor (Sartorius
AG, Göttingen, Germany) is a classic bioreactor for microbial fermentations with four baf-
fles, three Rushton stirrers and a bioreactor height to diameter ratio H/D of 3:1 [65]. As a
reference cultivation, duplicate cultivations were carried out with the same specific power
input (233 W m−3) as in the Minifors 2 bioreactor (Figure 1C). A duplicate was also carried
out using the system with optimized stirrer geometry, position and speed. The process is
described in detail in Figure 1 and the following sections.

CFD

Postprocessing (P/V, λₖ)

CFD

Optimized process (30 L) Reference process (30 L)
Optimized lab-scale 

process

CAD Geometry 4 L
Design space

(dₛ, α1, α2, H, N)
CAD Geometry 30 L

DACE (LHS)

Parameterized stirrer 
geometry and position 

(dₛ, α1, α2, H, N)

Automated CAD 
generation and meshing

CFD

Postprocessing (λₖ)

Discrete KS test

Validation
(PIV, Literature)

Surrogate model

Optimization

Optimized stirrer design

3D printing of the 
optimized stirrer

3D printing of the 
standard Rushton turbine

Postprocessing (P/V)

Validation
(Literature)

100

A B C

Figure 1. Overview of the experiments and steps carried out. (A) Steps marked in yellow show the
work carried out in Seidel et al. [26]. (B) Depicts the new scale-up process proposed here. (C) Shows
the traditional scale-up approach using a constant specific power input. This approach was used as
a reference.

2.1. Computational Fluid Dynamics

The CFD model validated in Seidel et al. [26] using PIV and data from literature
serves as the basis for the simulations carried out here. All CFD simulations were car-
ried out on the 30 L D-DCU from Sartorius AG, using different stirrers, stirrer positions
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and speeds (see Section 2.2). All geometries excluding the stirrers, which were required for
the simulations, were drawn with Inventor Professional 2023 (Autodesk Inc., San Rafael,
CA, USA). To automate the optimization of the stirrer geometry, the stirrers were drawn
using Onshape (PTC Inc., Needham, MA, USA) and adapted using the Python application
programming interface (API) for each simulation (this option is not available as standard
in Autodesk Inventor). For the CFD simulations, OpenFOAM version 10 was used and
meshes were generated with the integrated meshing tool SNAPPYHEXMESH. In order to es-
timate the discretization error, a mesh study with four different computational meshes was
performed. Due to the low aeration rates and the low stirrer speeds (in combination with
baffles, no vortex formation could be observed), a single-phase, steady-state simulation
was carried out. However, since Reynolds numbers higher than 10,000 were achieved in the
simulations, the Reynolds-Averaged Navier–Stokes (RANS) approach was chosen. As in
Seidel et al. [26], the k-ω shear stress transport (SST) model of Menter [66] was employed
as turbulence model, which is described in detail in Seidel et al. [26]. This turbulence model
is suitable for low Reynolds numbers as they occur under the selected process conditions
(Section 3.1) and in Seidel et al. [26]. The resulting momentum equation corresponds to
Equation (5) and the continuity equation to Equation (6).

∂~v
∂t

+∇ · (~v~v)−∇ · νeff∇~v = −1
ρ
∇pp +∇ · Sij (5)

∇ ·~v = 0 (6)

For the rotation of the stirrers, the multiple reference frame (MRF) approach was
utilized since these are steady-state simulations. A no-slip boundary condition was ap-
plied for all walls and a symmetry plane for the fluid surface [67,68]. For the pressure–
velocity coupling, the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)
algorithm was employed, which can be utilized in OpenFOAM using SIMPLEFOAM. Also,
as in Seidel et al. [26], an undershoot of the residuals of 1 · 10−5 was chosen as a con-
vergence criterion. All CFD simulations were performed with water at a temperature of
T = 310.15 K, which corresponds to a density of ρ = 993.37 kg m−3 and a kinematic
viscosity of ν = 0.6959 · 10−6 m2 s−1 [69]. The calculations were decomposed into 32 parts
using the Scotch algorithm and computed in parallel on the high-performance computing
(HPC) system described in Seidel and Eibl [70]. The visualization of the simulations was
carried out using Paraview 5.10.0 [71].

2.2. Optimization Process

As described in Johnson et al. [25], a similar Kolmogorov length scale distribution
cannot be expected if different geometries such as the number of baffles and different
stirrers are used. To obtain comparable Kolmogorov length scale distributions that serve
as a scale-up criterion, five parameters were defined, varied and optimized. These five
parameters are the stirrer speed N, stirrer diameter ds, the blade angle α1, the pitch angle
of the stirrer blades α2 and the stirrer height H (Figure 2).

Table 1 shows the design space investigated with the limits set by the system. Based on
this design space, a DACE was created using LHS for design space exploration. For the five
parameters, 100 CFD simulations were performed automatically. Daymo et al. [43] also used
100 simulations for five variable parameters for the optimization of a methane catalytic
partial oxidation monolith reactor. Chen et al. [41] described ten times the number of
parameters as standard for LHS and CFD-based optimization. Afzal et al. [42] used 15 times
the number of parameters and Benchikh Le Hocine et al. [36] performed 148 simulations
for seven parameters.



Processes 2023, 11, 2703 6 of 22

Figure 2. Technical drawing of the stirrer to be optimized for the 30 L D-DCU bioreactor. The five
input variables described in Table 1 are marked.

Table 1. Overview of the input variables and the resulting design space.

Parameter Minimum Maximum

Stirrer speed N 50 rpm 500 rpm
Stirrer height H 0.10 m 0.45 m
Stirrer diameter ds 50 mm 170 mm
Blade angle α1 20° 120°
Pitch angle α2 −45° 90°

The Design Analysis Kit for Optimisation and Terascale Applications (DAKOTA) ver-
sion 16.5 developed by Sandia National Laboratories was used for the entire optimization
process, which allowed the LHS, DACE, evaluation and optimization to be carried out
with one command. How DAKOTA interacts with OpenFOAM is depicted in Figure 1 and
described in detail in Guerrero et al. [33] and Daymo et al. [43]. As described in Section 2.1,
the stirrer geometry was drawn and parameterized using the web-based CAD service
Onshape [72]. Using the Python API, the geometry and thus the computational mesh could
be automatically adapted for the CFD simulations. In order to obtain a single value per
simulation for the optimization process, the Kolmogorov length scale distribution was
analyzed using the two-sample KS test with the null hypothesis H0 of equal cumulative
distributions F (Equation (7)) [73]. The test statistic D served as the optimization criterion
(Equation (8)). In the KS test, the cumulative Kolmogorov length scale distribution FMinifors
from the optimized Minifors 2 cultivation by Seidel et al. [26] was used.

H0 : FMinifors(λ) = FD-DCU(λ) ∀λ ∈ R≥0 (7)

D = max|FMinifors(λ) = FD-DCU(λ)| (8)
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The automated analysis was carried out with Python 3.10, using PyVista 0.38.5 for
the analysis in addition to the usual modules, which has an integrated OpenFOAM case
reader [74]. A quadratic polynomial model was used as a surrogate model. DAKOTA
allows asynchronous evaluation, which means that not only a single CFD simulation was
parallelized (Section 2.1) but also several simulations and evaluations could be carried out
in parallel for the design space exploration. Here, four simulations were run in parallel
on the HPC system. Once all 100 simulations were completed, the surrogate model was
created, and the optimization was carried out.

2.3. Cultivations for Biological Evaluation

In order to evaluate the optimized stirrer geometry, position and speed predicted by
CFD, four cultivations were carried out in the 30 L D-DCU system from Sartorius AG. Two
cultivations were carried out with the standard configuration of three Rushton stirrers
(ds = 105 mm), four baffles and ring sparger and two cultivations with the same configura-
tion but with optimized stirrer geometry. Both the inoculum production and the cultivations
were carried out analogously to the experiments described in Seidel et al. [26] and serve as
the basis for the experiments conducted here. Batch cultivations were carried out with the
HEK FreeStyleTM 293-F cell line (Thermo Fisher Scientific, Waltham, MA, USA [75]) and
the chemically defined FreeStyleTM 293 medium (Thermo Fisher Scientific) which contains
L-alanyl-L-glutamine (GlutaMAXTM) as a stabilized form of L-glutamine. The inoculum
for cultivations in the 30 L D-DCU system and reference shake flasks was prepared from a
cryovial of a working cell bank with 1 · 107 cells mL−1. The thawed cells were transferred
into 30 mL of pre-warmed FreeStyleTM 293 medium (125 mL unbaffled shake flask) and
then passaged into 500 mL unbaffled shake flasks at a VCD of about 0.3 · 106 cells mL−1.
The inoculum production lasts 7 days and was performed in a Multitron shaker from
Infors AG at a temperature of T = 310.15 K, a shaking speed of N = 100 rpm, a shaking
amplitude of d0 = 50 mm, a CO2 concentration of cCO2 = 8% and a relative humidity
of RH = 80% [26]. The cultivations were carried with a working volume of 30 L and an
inoculation cell density of 0.3 · 106 cells mL−1. The inoculum was transferred to the biore-
actor using a transfer flask (5 L plain bottom Erlenmeyer flask with a disposable 100 mm
aseptic transfer cap, from Corning Inc. (Corning, NY, USA)). The cultivation temperature,
which was controlled through the double jacket, was 310.15 K in each case. The oxygen
concentration was kept above 40%, with 0.1 vvm air being added via the headspace and,
when necessary, O2 via the sparger (Appendix A, Figure A2A). The pH was controlled by
adding CO2 through the sparger to maintain a pH of 7.10± 0.05 (Appendix A, Figure A2B).
The stirrer speeds were determined with CFD resulting in 213 rpm (vtip = 1.17 m s−1) for
the Rushton stirrer configuration and 67 rpm (vtip = 0.56 m s−1) for the optimized stirrer.

The CFD-optimized stirrer was manufactured using a selective laser sinter (SLS) 3D
printing process. The material used is biocompatible polyamide 2200 (PA2200), which is
United States Pharmacopeia (USP) class VI certified, Food and Drug Administration (FDA)
approved and complies with EN ISO 10993-1 [76]. The stirrers were printed with the EOS
p396 system (EOS GmbH, Krailling, Germany). In order to exclude the influence of the
stirrer material despite biocompatibility, the standard stainless steel Rushton stirrers were
replaced by SLS 3D-printed stirrers for maximum comparability.

To monitor the process, cell-specific parameters such as VCD, total cell density (TCD),
viability, and cell and aggregate sizes were measured using a CedexHiRes analyzer (Roche
Diagnostics GmbH, Basel, Switzerland) and NucleoCounter NC-200 (Chemometec, Allerod,
Denmark). Furthermore, an EXcell 231 near-infrared (NIR) absorption sensor (Exner
Process Equipment GmbH, Ettlingen, Germany) was used to determine the optical den-
sity (OD850 nm) online at a wavelength of 850 nm. Morphology was regularly checked
using differential interference microscopy (IX83 inverted microscope with UPlanSApo
100x/1.4 oil ∞/0.17/FN26.5 objective, both from Olympus Life Science (Waltham, MA,
USA)). In addition to the cell-specific parameters, the substrates glucose and L-alanyl-L-
glutamine, as well as metabolites lactate and ammonium, were measured. These measure-
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ments were carried out with a CedexBio analyzer (Roche Diagnostics GmbH) every 24 h.
The pH value was likewise externally checked every 24 h with a FiveEasy pH-meter F20
(Mettler-Toledo GmbH, Greifensee, Switzerland). A detailed functional description of the
measuring instruments used can be found in Seidel et al. [26]. The reference cultivations
in 500 mL unbaffled shake flasks were each prepared from the same inoculum and were
cultivated at a shaking rate of 130 rpm (the remaining conditions as for the production of
the inoculum). Samples were also taken daily, and the same analyses were carried out as in
the stirred bioreactor.

3. Results and Discussion
3.1. Optimization with CFD

The CFD model used has already been validated using PIV and literature data as de-
scribed in Seidel et al. [26]. In order to quantify the discretization error for the new geometry
and to ensure an economic implementation with regard to the 100 optimization simulations,
a mesh study was carried out. For this study, the grid convergence index (GCI) method was
used as described in Baker et al. [77], Ramírez et al. [78] and Pappalardo et al. [79]. The stan-
dard value of 1.25 was chosen as the safety factor FS [23,26]. The mesh study was conducted
with the standard 30 L D-DCU configuration with three Rushton impellers at a stirrer speed
of 364 rpm (vtip = 2 m s−1) and 30 L working volume. The specific power input was used
as an evaluation criterion, which was also calculated by Schirmer et al. [65] with the same
configuration and speed. The refinement factor ranged from 1.08 to 1.17, whereas a value
of 1.1 to 1.3 is typically recommended [80]. The quotient GCIi+2,i+1

rpa GCIi+1,i
was close to 1 in each

case, suggesting an asymptotic behavior of the specific power input (Table 2). For further
simulations, mesh M4 with 4.88 · 106 cells and its mesh settings was used, which in this case
resulted in a simulation time of 3.5 h with 32 cores.

Table 2. Overview of GCI analysis for the 30 L D-DCU bioreactor with three Rushton impellers and a
stirrer speed of 364 rpm (vtip = 2 m s−1). A detailed overview of the mesh properties can be found in
Table A1.

Case Mesh r p̂a εmn GCI [%] GCIi+2,i+1
rpa GCIi+1,i

Case 1 M1-M2 1.08 2.46 3.84 · 10−3 2.24 1.13
M2-M3 1.13 4.40 · 10−3 1.63

Case 2 M2-M3 1.13 2.04 4.40 · 10−3 2.01 1.04
M3-M4 1.17 4.72 · 10−3 1.52

Schirmer et al. [65] also characterized this system in terms of biochemical engineer-
ing parameters using CFD, but with Ansys Fluent 16.2. They utilized the realizable k-ε
model, whereas here the k-ω-SST model was used. The same boundary conditions were
applied and Schirmer et al. [65] used slightly fewer grid cells (4.20 · 106 cells) than here
(4.88 · 106 cells). As can be seen in Figure 3, the specific power inputs agree for the range
from vtip = 2 m s−1 (N = 364 rpm and Re = 66,592) to vtip = 5 m s−1 (N = 909 rpm
and Re = 166,481). As already mentioned, the 30 L D-DCU bioreactor is a bioreactor typi-
cally used for microorganisms [65,81,82]. Therefore Schirmer et al. [65] only investigated
the range from vtip = 2 m s−1 to 5 m s−1, which corresponds to a specific power input
over 1 kW m−3. However, for the reference cultivation with the same specific power in-
put as in Minifors 2, lower power inputs or speeds were required. With N = 213 rpm
(vtip = 1.17 m s−1 and Re = 38,956), the 233 W m−3 described in Seidel et al. [26] can be
achieved. As can be seen in Figure 4B), the flow field typical for Rushton impellers is
formed with the maximum velocities at the stirrer tips [38,83].
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Figure 3. Comparison of the determined specific power input in the standard D-DCU 30 L configura-
tion with three Rushton impellers with published data from Schirmer et al. [65].

In order to obtain a Kolmogorov length scale distribution as similar as possible to that
in Minfors 2, optimizations of the stirrer geometry, position and speed were then carried
out. The 100 parameter combinations generated by the LHS and subsequently simulated
using CFD are shown in Figure 5. For this purpose, the relative parameter values, which
are described in Table 1, were mapped in the radar chart. Corresponding velocity plots are
summarized in the appendix in Figure A1.

Figure 4. Velocity profiles with line integral convolution (LIC) of the investigated bioreactors at
233 W m−3. (A) Minifors 2 bioreactor with 4 L working volume at 275 rpm that served as a baseline.
(B) Standard configuration of the 30 L D-DCU bioreactor with 3 Rushton impellers at 213 rpm. (C) Op-
timized stirrer design where a similar Kolmogorov length distribution was obtained (N = 67 rpm).
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Figure 5. Explored design space for optimization. The five parameters examined are shown nor-
malized. The absolute values are summarized in Table 1. The selected parameter combination
is marked black and, according to the KS test, showed the best match of the Kolmogorov length
scale distribution.

Based on the DACE, a different RSM can now be created, whereby the KS test variable
was finally chosen for the scale-up. However, simpler analyses can also be carried out, such
as modeling the specific power input. Equation (9) shows the results for the investigated
design space (ns = 100, R2 = 0.96). If only the specific power input should be kept constant
for the scale-up, a Pareto front results, which is shown in Figure 6A, for the combination
of stirrer speed and stirrer diameter. The same can be examined, for example, for the
combination of pitch angle α2 and the stirrer speed N. This shows that a larger angle α2 or
a larger stirrer diameter results in a larger projected cross-sectional area and thus a larger
specific power input for the same stirrer speed N (Figure 6B).

P/V = 10a1·H [m]+a2·ds [mm]−a3·d2
s [m2]+a4·α1 [°]+a5·α2

1 [°
2]−a6·α2 [°]+a7·N [rpm]−a8·N2 [rpm2]−a9 (9)

a1 = 0.162 a2 = 0.049 a3 = 1.25 · 10−4 a4 = 6.15 · 10−3 a5 = 2.29 · 10−4

a6 = 2.21 · 10−4 a7 = 0.013 a8 = 1.39 · 10−5 a9 = 3.67

However, if the described test statistic D of the KS test is employed, the best agreement
with the Minifors 2 bioreactor is obtained for N = 67 rpm, H = 0.124 m, ds = 160.23 mm,
α1 = 59.60° and α2 = 41.56°, which results in a test statistic of D = 0.117. This corresponds
to a Re of 32,080 and a tip speed of 0.56 m s−1. Visualizing the Kolmogorov length scale
distributions, it can be seen that there are only minimal differences in the distribution
between the optimized design of the 30 L D-DCU and the Minifors 2, whereas the differ-
ences with the standard 30 L D-DCU with three Rushton impellers are significantly larger
(Figure 7). Since a similar Kolmogorov length scale distribution was achieved, a similar
energy dissipation rate distribution was also achieved (Equation (4)) and therefore resulted
in the same specific power input of 233 W m−3.
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Figure 6. Pareto front of the specific power input (233 W m−3). (A) Stirrer diameter ds dependence on
the stirrer speed N (at H = 0.2 m, α1 = 60°, α2 = 45°). (B) Pitch angle α2 dependence on the stirrer
speed N (at H = 0.2 m, ds = 120 mm, α1 = 25°).

As can be seen in Figure 7, various simulations were performed that are far from the
optimum. This is due to the fact that an LHS was performed for the optimization and
thus the entire design space described in Table 1 was considered in an SBO. This approach,
which has been used by various authors, also has the advantage that several simulations
can be performed simultaneously [36,41,42,84,85]. Nevertheless, optimization might be
performed with fewer simulations if direct optimization of the geometry were performed
instead of using a surrogate model. For this purpose, optimization algorithms such as the
genetic algorithm [86,87] or Bayesian optimization [88,89], which adapt the geometry up to
a certain convergence criterion, would be suitable.

Figure 7. Cumulative distribution function (CDF) of the Kolmogorov length scales for the initial case,
the scale-up approach via the specific power input and the optimized case.
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3.2. Biological Verification

The stirrer design optimized in Section 3.1 and the standard configuration were used for
the cultivation of HEK FreeStyleTM 293-F suspension cells (Table A2). The batch experiments,
which were performed in duplicates, lasted 168 h each, where the maximum VCD was reached
after 120 h. In the reference cultivation with Rushton impellers and the same specific power
input as at the laboratory scale (Minifors 2), a maximum VCD of 5.02 · 106 cells mL−1 was
achieved, which is lower compared to the laboratory scale with 5.77 · 106 cells mL−1. With the
optimized stirrer geometry, however, a VCDmax of 5.60 · 106 cells mL−1 was achieved, which
is comparable to the laboratory scale (Figure 8). At this point, the viability of all cultivations
was above 95%. The maximum VCD in all cultivations was slightly higher than the values
described in the literature for cultivations in unbaffled shake flasks where values between
4.2 · 106 cells mL−1 and 4.6 · 106 cells mL−1 were achieved [26,57]. The maximum specific
growth rates µmax were achieved for the laboratory scale and for all 30 L D-DCU experiments
between the time points of 24 h and 72 h and were µmax, Minifors = 0.0258 h−1 for the laboratory
scale, µmax, D-DCU = 0.0248 h−1 for the reference cultivation with the same specific power
input and µmax, D-DCU, opt. = 0.0262 h−1 for the bioreactor with optimized stirrer design. All
maximum specific growth rates were in the range of 0.020 h−1 to 0.036 h−1, which is described
in the literature [53–57]. The glucose concentration dropped from 4.6 g L−1 to 0.80 g L−1 in all
cultivations (Appendix A, Figure A3A). The same glucose concentration drop was described
by Maschke et al. [57] for the same cell line and medium in the 250 mL shake flask. As in the
laboratory scale, the lactate concentration rose up to the time point t = 96 h and dropped to the
end of cultivation (Appendix A, Figure A3B). Slightly higher maximum lactate concentrations
(2.11 g L−1) were measured in the reference cultivations with the same specific power input as
in the laboratory scale than in the cultivations with optimized stirrer geometry (1.98 g L−1).
This increased lactate concentration could be due to the fact that the hydrodynamic stress was
too high for the HEK293 cells [62].

Figure 8. Temporal development of the viable cell density for the investigated systems at a specific
power input of 233 W m−3. Green shows the cultivations in the 4 L Minifors 2 bioreactor that have
reached a maximum VCD of 5.77 · 106 cells mL−1 [26]. In purple are the cultivations in the 30 L
bioreactor and Rushton impellers with the same specific power input as in the 4 L system, which
served as a reference (VCDmax = 5.02 · 106 cells mL−1). The optimized cultivations, with a similar
Kolmogorov length scale distribution, are shown in teal (VCDmax = 5.60 · 106 cells mL−1).
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In Seidel et al. [26], no statistically significant difference in the measured cell diameter
could be observed with different specific power inputs (63 W m−3 to 451 W m−3). The cell
diameter in the 4 L system also remained constant over the cultivation period, although the
variance in the cell diameter increased slightly over the course of the cultivation. For the
reference cultivations in the 30 L system, the cell diameter ((14.49± 1.77)µm) was slightly
smaller than at laboratory scale ((15.28± 2.03)µm) and that of the system with optimized
stirrer geometry ((15.17± 2.33)µm). Nevertheless, cell diameter in all cultivations was
within the typical range described in the literature (14 µm to 16 µm) [58–60]. As described
in Seidel et al. [26], the aggregate size distribution at the time of maximum VCD strictly
follows a geometric distribution with the free parameter p equal to the proportion of
non-aggregated cells. The fraction of cells that occur as an aggregate of size n can thus be
calculated according to Equation (10). Seidel et al. [26] could further show that Equation (11)
applies for shake flasks both with and without baffles, as well as for different operating
parameters in the Minfors 2 bioreactor. Using this equation, a value of p = 0.6876 would
result in the reference cultivation, which would correspond to 68.76% of non-aggregated
cells at the time of maximum VCD (λk = 5.064 · 10−5 m). As measurements of the two
cultivations showed, 68.39% and 69.17%, respectively, were present as non-aggregated
cells at this time. The same situation occurs for the cultivations with the optimized stirrer
design. Whereas, the mean Kolmogorov length scale of 5.730 · 10−5 m predicts a 65.70%
proportion of non-aggregated cells, and 64.64% and 64.22% were measured. The aggregate
size distribution also follows the correlation described by Seidel et al. [26] at the pilot scale.

f (n) = (1− p)n−1 p , {p|0 ≤ p ≤ 1} (10)

p = −4589 [m−1] · λk [m] + 0.92 (11)

With the help of the OD850 nm sensor, the growth of cells was monitored online [90–92].
As only the turbidity can be measured, no distinction can be made between viable and
dead cells. Since there is only a minimal difference between TCD and VCD (viability above
95%) before the maximum VCD is reached at 120 h, the OD signal can be used for process
monitoring (Figure 9). As shown in Figure 10, the OD850 nm signal correlates with the
offline measured TCDs for all performed cultivation cycles over the entire measuring range
(0.30 · 106 cells mL−1 to 6.46 · 106 cells mL−1).

Figure 9. Temporal progression of VCD, TCD and online measured OD850 nm in the 30 L system.
(A) Cultivation with Rushton impellers at the same specific power input as in the laboratory scale
(Minifors 2) and (B) with optimized stirrer geometry.
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Figure 10. Total cell density TCD as a function of the optical density at 850 nm (OD850 nm). For the
TCD range of 0.30 · 106 cells mL−1 to 6.46 · 106 cells mL−1 achieved in the cultivations, a linear rela-
tionship can be demonstrated for all cultivations.

4. Conclusions and Outlook

In this study, two different scale-up strategies for HEK FreeStyleTM 293-F suspension
cells were quantitatively compared. On the one hand, the cultivation parameters proposed
in Seidel et al. [26] were utilized to scale-up from a 4 L working volume to a 30 L working
volume by keeping the specific power input constant at 233 W m−3 (in addition to all scale-
independent parameters). Even though a system designed for microbial cultivation was
used, decent growth was observed, although it was significantly lower than at the laboratory
scale (VCDmax, D-DCU = 5.02 · 106 cells mL−1 and VCDmax, Minifors = 5.77 · 106 cells mL−1).
On the other hand, a CFD-optimized stirrer design was used for the same D-DCU biore-
actor, which showed a similar Kolmogorov length scale distribution as in the small scale.
Through the automated optimization of the stirrer, a comparable cultivation could be car-
ried out with respect to the maximum VCD (VCDmax, D-DCU, opt. = 5.60 · 106 cells mL−1 and
VCDmax, Minifors = 5.77 · 106 cells mL−1). Thus, it could be shown that in this case, the sim-
ple and frequently used scale-up strategy of constant specific power input did not work
as well as the use of the same Kolmogorov length scale distribution. Furthermore, these
results support the findings of Sandadi et al. [93], Nienow et al. [28] and Nienow [27] that
today’s mammalian cell cultures are much less fragile in the applied chemically defined
culture media than many authors still assume.

With the method presented here, further, and more complex optimizations for bioreac-
tors can be carried out on an open-source basis. For example, the kLa value could also be
modeled using CFD coupled with population balance modeling and utilized as a scale-up
criterion in combination with the specific power input, or the EDCF described by Böhm
et al. [5]. In addition, it could also be interesting to perform transient simulations to in-
vestigate the mixing time as Wu et al. [38] did as a scale-up criterion, since this can be
problematic especially for large reactors. Furthermore, not only the stirrer geometry but
also the addition of a tracer can be optimized, which is also a challenge when scaling up
bioreactors. Another possible application of the approach demonstrated in this publication
is to create scale-down bioreactors with similar Kolmogorov length scale distributions by
adjusting the laboratory scale stirrer designs to given large-scale bioreactor geometries.
This would allow the cost-efficient bioprocess optimization at laboratory scale without
changing the large-scale bioreactor design, which is not easily possible with single-use
bioreactors or validated systems, for example.
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Abbreviations

The following abbreviations are used in this manuscript:
API Application Programming Interface
CDF Cumulative Distribution Function
CFD Computational Fluid Dynamics
CHO Chinese Hamster Ovary
DACE Design and Analysis of Computer Experiments
DAKOTA Design Analysis Kit for Optimisation and Terascale Applications
FDA Food and Drug Administration
HEK Human Embryonic Kidney
HPC High Performance Computing
KS Kolmogorov–Smirnov
LHS Latin Hypercube Sampling
MRF Multiple Reference Frame
NIR Near-Infrared
PA Polyamide
PIV Particle Image Velocimetry
PLIC Piece-wise Linear Interface Calculation
RANS Reynolds-Averaged Navier–Stokes
SBO Surrogate-Based Optimization
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
SLS Selective Laser Sinter
SST Shear Stress Transport
USP United States Pharmacopeia

Nomenclature

The following nomenclature is used in this article:
Latin symbols
ai Model constant [-]
cCO2 Concentration of CO2 in the shaking incubator [%]
cGlc Glucose concentration [g L−1]
cLac Lactate concentration [g L−1]
D Test statistic of the Kolmogorov–Smirnov test [-]
d0 Shaking amplitude [mm]
ds Stirrer diameter [mm]
DO Dissolved oxygen concentration [%]

https://github.com/seideste/Automated-shape-and-process-parameter-optimization.
https://github.com/seideste/Automated-shape-and-process-parameter-optimization.
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EDCF Energy Dissipation Circulation Function [W m−3 s−1]
F() Cumulative distribution [-]
f () Geometric function [-]
Fs Safety factor [-]
GCI Grid convergence index [%]
H Stirrer height [m]
H0 Null hypothesis [-]
k Turbulent kinetic energy [m2 s−2]
kLa Volumetric oxygen mass transfer coefficient [h−1]
M Moment/Torque [N m]
N Shaking/Stirring speed [rpm]
nc Number of mesh cells [-]
OD850 nm Optical density at 850 nm [-]
P Power [W]
p Free parameter of the geometric distribution [-]
p̂a Observed order of accuracy [-]
pp Pressure [Pa]
P/V Specific power input [W m−3]
r Mesh refinement factor [-]
R2 Coefficient of determination [-]
Re Reynolds number [-]
RH Relative humidity [%]
Sij Reynolds stress tensor [N m−2]
T Temperature [K]
t Time [s]
tc Circulation time [s]
TCD Total cell density [cells mL−1]
V Volume [m3]
Vl Impeller swept volume [m3]
~v Velocity [m s−1]
vg Superficial gas velocity [m s−1]
vtip Tip speed [m s−1]
VCD Viable cell density [cells mL−1]
VCDmax Maximum viable cell density [cells mL−1]
Greek symbols
α1 Blade angle [°]
α2 Pitch angle [°]
ε Energy dissipation rate [m2 s−3]
ε̄ Volume-averaged energy dissipation rate [m2 s−3]
εmax Maximum energy dissipation rate [m2 s−3]
εmn Relative error [%]
ΘM Mixing time [s]
λk Kolmogorov length scale [m]
λ̄k Volume-averaged Kolmogorov length scale [m]
ν Kinematic viscosity [m2 s−1]
νeff Effective viscosity [m2 s−1]
νT Turbulent eddy viscosity [m2 s−1]
ρ Density [kg m−3]
Φ Hydrodynamic heterogeneity [-]
ω Specific dissipation rate [s−1]
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Appendix A

Figure A1. Velocity profile of all 100 optimization runs.
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Table A1. Overview of the investigated meshes for the GCI analysis (Table 2).

Mesh Number of
Cells [-]

Min. Cell
Volume [m3]

Max. Cell
Volume [m3]

Max.
Skewness [-]

P/V [W m−3]

M1 1.67 · 106 6.32 · 10−12 1.09 · 10−6 3.91 1243.72
M2 2.12 · 106 5.15 · 10−12 5.54 · 10−7 3.74 1248.49
M3 3.02 · 106 1.34 · 10−12 2.73 · 10−7 3.70 1253.98
M4 4.88 · 106 6.71 · 10−13 7.25 · 10−8 3.86 1259.90

Table A2. Comparison of the process parameters for the benchtop scale bioreactor (Minifors 2),
the reference cultivation (D-DCU, same P/V) and the optimized scale-up approach (D-DCU, similar
F(λk)).

Parameter Minifors 2 D-DCU Reference D-DCU Optimized

V 4 L 30 L 30 L
Stirrer type 3-blade segment 3x Rushton 3-blade segment
ds 85 mm 105 mm 160 mm
N 275 rpm 213 rpm 67 rpm
vtip 1.22 m s−1 1.17 m s−1 0.56 m s−1

P/V 233 W m−3 233 W m−3 233 W m−3

Same F(λk) as in
the Minifors 2

– No Yes

DO set point 40 % 40 % 40 %
pH set point 7.1 7.1 7.1

Figure A2. Online measured process data. (A) Dissolved oxygen concentration and (B) pH value.
The dead band for pH control is shown in red.
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Figure A3. Offline data of the performed cultivations measured with the CedexBio analyzer. (A) Glu-
cose concentration during cultivation and (B) the corresponding lactate concentration.
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