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Machine learning-informed and synthetic biology-
enabled semi-continuous algal cultivation
to unleash renewable fuel productivity

Bin Long 1, Bart Fischerz, Yining Zeng3, Zoe Amerigian 1, Qiang Li1, Henry Bryantz, Man Li1'4,
Susie Y. Dai"* & Joshua S. Yuan® 4%

Algal biofuel is regarded as one of the ultimate solutions for renewable energy, but its
commercialization is hindered by growth limitations caused by mutual shading and high
harvest costs. We overcome these challenges by advancing machine learning to inform the
design of a semi-continuous algal cultivation (SAC) to sustain optimal cell growth and
minimize mutual shading. An aggregation-based sedimentation (ABS) strategy is then
designed to achieve low-cost biomass harvesting and economical SAC. The ABS is achieved
by engineering a fast-growing strain, Synechococcus elongatus UTEX 2973, to produce limo-
nene, which increases cyanobacterial cell surface hydrophobicity and enables efficient cell
aggregation and sedimentation. SAC unleashes cyanobacterial growth potential with 0.1g/L/
hour biomass productivity and 0.2 mg/L/hour limonene productivity over a sustained period
in photobioreactors. Scaling-up the SAC with an outdoor pond system achieves a biomass
yield of 43.3 g/m?2/day, bringing the minimum biomass selling price down to approximately
$281 per ton.

TDepartment of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA. 2 Department of Agricultural Economics, Texas
A&M University, College Station, TX 77843, USA. 3 Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO
80407, USA. 4 Synthetic and Systems Biology Innovation Hub (SSBiH), Texas A&M University, College Station, TX 77843, USA. email: syuan@tamu.edu

| (2022)13:541] https://doi.org/10.1038/s41467-021-27665-y | www.nature.com/naturecommunications 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27665-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27665-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27665-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27665-y&domain=pdf
http://orcid.org/0000-0003-1680-4700
http://orcid.org/0000-0003-1680-4700
http://orcid.org/0000-0003-1680-4700
http://orcid.org/0000-0003-1680-4700
http://orcid.org/0000-0003-1680-4700
http://orcid.org/0000-0003-0259-9582
http://orcid.org/0000-0003-0259-9582
http://orcid.org/0000-0003-0259-9582
http://orcid.org/0000-0003-0259-9582
http://orcid.org/0000-0003-0259-9582
http://orcid.org/0000-0002-0129-3904
http://orcid.org/0000-0002-0129-3904
http://orcid.org/0000-0002-0129-3904
http://orcid.org/0000-0002-0129-3904
http://orcid.org/0000-0002-0129-3904
mailto:syuan@tamu.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

lgae-based bioproduction represents one of the most

energy- and carbon-efficient solutions for renewable fuels

and CO, capture and utilization!. Despite significant
potential and extensive efforts, the commercialization of algal
biofuel has been hindered by limited sunlight penetration, poor
cultivation dynamics, relatively low yield, and the absence of cost-
effective industrial harvest methods?-%. Growth limitation caused
by mutual shading and high dewatering costs are the major
causes for these technical barriers’-?. Overcoming these chal-
lenges could enable viable algal biofuels to reduce carbon emis-
sions, mitigate climate change, alleviate petroleum dependency,
and transform the bioeconomy.

Algal antennae are highly efficient at absorbing almost all
photons that hit them, leading to mutual shading!?. The lack of
thorough, quantitative understanding of mutual shading hinders
light management and hampers algal growth potential. Precise
light distribution pattern (LDP) prediction could guide an
innovative cultivation design to unleash growth potential. How-
ever, most current computational models predict LDPs as one-
dimensional light paths that are not representative of real-world
LDPs?-14, Moreover, these models perform poorly at high cell
concentrations with more severe light scattering and diffusive
reflection® 14 Machine learning based on empirical training
could overcome these challenges to achieve two- or even three-
dimensional LDP predictions.

Besides the growth limitation, high costs and energy demands
associated with harvesting and dewatering represent another
significant technical barrier?, creating an inherent dilemma
between light availability and harvesting cost. High cell con-
centration is preferred for algal biomass harvesting to minimize
cost per unit, but it will inevitably result in strong mutual shading
that limits growth. Traditional methods like centrifugation, fil-
tration, chemical flocculation, or bio-flocculation can make up as
much as 30% of total costs and 50% of total energy use, which
makes them impractical for frequent harvests to bypass mutual
shading®>1>16. A cost-effective harvesting method is thus
urgently needed to address this dilemma.

Here, we provide a solution for the aforementioned challenges
with a cultivation design informed by machine learning and a
synthetic biology-based platform implementation. First, we
demonstrate machine learning as an effective LDP-prediction tool
to assess light availability inside algal culture. Second, this light
availability is used to predict cyanobacterial growth rates with a
second machine learning model, GRM (growth rate prediction
model). Together, the machine learning models allow accurate
growth simulation and guide the design of a semi-continuous
algal cultivation (SAC). SAC sustains optimal growth rates to
minimize mutual shading and drastically increases biomass pro-
ductivity. Third, and most importantly, we advance a strategy of
aggregation-based sedimentation (ABS) for low-cost harvesting
and cost-effective SAC implementation. The ABS is achieved by
engineering Synechococcus elongatus UTEX 2973 (UTEX 2973) to
produce limonene, which generates hydrophobic surface inter-
action and triggers cell aggregation for sedimentation. Moreover,
the strain co-produces biomass as a potential fuel precursor and
limonene as a value-added product. Scaling-up of the machine
learning-informed SAC with an outdoor pond system also shows
a high biomass productivity. The impacts of high yields from SAC
and a simplified harvest method are assessed with a techno-
economic analysis (TEA).

Results

Building machine learning models for LDP prediction. Con-
sidering the asymmetry of light sources in most PBRs and raceway
ponds, LDPs should be two-dimensional or even three-dimensional.

Here, we employed a two-dimensional grayscale image to represent
the LDP, with grayscale values (GSV, range of 0 to 255 with 0 for
black and 255 for white) representing light intensities (See details in
Supplementary Method 1). The GSVs and light intensities showed a
strong linear correlation with an average R? score of 0.969 across a
wide range of cell concentrations, validating the approach (Fig. 1c).
Next, we evaluated the effectiveness of machine learning in LDP
prediction. The overall workflows of sample preparation and
training processes are shown in Fig. la. Light intensity and cell
concentration, the two major factors determining LDPs, were set as
features and their corresponding LDPs were set as labels in training.
We chose the support vector regression (SVR) algorithm to train
due to its versatility!7-1%, resulting in an LDP prediction model
(LDPM, see details in Supplementary Method 2).

Evaluation of the LDPM prediction showed an R? score of
0.993 between all predicted LDPs and measured LDPs (Fig. 1d),
indicating high prediction accuracy. A pixel-by-pixel evaluation
of the entire LDP suggested that 94.4% of pixels achieved R?
values > 0.90, and only 0.8% of pixels had R? values in the range
of 0.79-0.85 (Fig. 1b and Supplementary Fig. 1), indicating
precise predictions at most pixels. Pixels further away from the
light source (row 12-row 18) showed relatively lower R? scores
(Fig. 1b), presumably because of the increased complexity of the
light pattern. Overall, the accurate LDP prediction proves the
feasibility of using machine learning to model light availability
inside algal cultures.

The high R? score (0.993) highlights the increased accuracy of
the machine learning model over traditional mathematical
models!®1314 Furthermore, unlike mathematical models that
can only predict one-dimensional light paths, machine learning-
predicted LDPs can be two-dimensional or even three dimen-
sional. Moreover, the upper cell concentration limit of the LDPM
is about 3.9 g/L, which is higher than the limit of ~1 g/L presented
in previous mathematical models!®!3:14, The larger prediction
range indicates that a machine learning-based strategy could
address LDP prediction challenges caused by complex light
scattering and interference at high cell concentrations. The
methodology for LDP prediction proposed in this study could be
transferred to any existing algal cultivation systems, such as
indoor/outdoor PBRs or pond systems. The superior performance
of the machine learning model-in particular, a larger prediction
range and higher accuracy-enabled LDP outputs to be used to
simulate growth curves using a second machine learning model.
Such integration has not been achieved in previous studies and
would guide cultivation optimization.

LDP-enabled growth rate prediction. The LDP prediction
allowed us to quantify mutual shading and explore the impact of
light availability on cyanobacterial growth. We found that the
shading effect increased sharply when cells grew to a high con-
centration (Supplementary Fig. 2), similar to previous studies!>20.
Cyanobacterial growth rates peaked when dark areas, defined as
pixels with GSVs <25.5 (10% of the maximal value, see details in
Supplementary Method 3), reached 43.1 +£4.9% at all tested light
conditions. The growth rate dropped drastically when dark areas
reached a plateau ~65% (Supplementary Fig. 3). Specifically, when
dark areas reached 43.1%, cell growth began to be inhibited by
mutual shading. Such inhibition intensified after dark areas
reached 65%. The strong correlation between light pattern and
growth rates suggests that light availability is the primary factor
determining cyanobacterial growth rates when nutrients are suf-
ficient and temperature is controlled. The results are consistent
with previous findings that light availability defines the growth
potential for cyanobacteria given abundant nutrients2122, More
importantly, this quantitative understanding allowed us to develop
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Fig. 1 Data processing and machine learning. Data pre-processing (Green arrows), machine learning training (Blue), and prediction process (Orange) are
shown in a. Light distribution patterns (LDPs) inside a PBR with varied cell concentrations under different light intensities are captured and transformed to
grayscale images, followed by compression to 40 x 18 pixels. The light intensities and cell concentrations, as well as the corresponding 40 x 18-pixel LDPs,
are used as features and labels, respectively, in the machine learning training. In order to achieve accurate prediction, the training and prediction are

performed pixel by pixel. b Pixel-by-pixel R2 evaluation of LDPM prediction over testing samples suggests LDPM performs well at the majority of pixels.
Evaluation over all pixels on testing LDPs showed an R? score of 0.993 (d), further verifying the accuracy of the LDPM. ¢ linear regression shows near-
linear correlation between GSV and light intensity across all cell concentrations (average R? score at 0.969), suggesting the grayscale value is a legitimate
representation of light intensity. Cell concentrations from left to right are 0.11973, 0.21294, 0.40872, 0.45162, 0.54405, 0.62712, 0.74256, 0.82056,

0.90948, 0.96915, 1.10604, 1.2246, 1.3026, 1.3923, 1.443, 1.5444, 1.7901, 1.9188, 2.0241, 2.3556, 2.535, 2.9601, and 3.6777 g/L. Source data are provided

as a Source Data file.

a second machine learning model to predict growth rates based on
LDPs. We named this second machine learning model a growth
rate prediction model (GRM).

The overall workflow for GRM training is shown in Fig. 2b.
Vectors extracted from LDPs and their corresponding growth
rates (based on the same time points) were set as features and
labels in the training, respectively (See details in Supplementary
Method 4 and 5). As shown in Fig. 2¢, the validation rendered an
R? value of 0.992, verifying the accuracy of GRM prediction. The
results established quantitative connection between light avail-
ability and cell growth rates. The success in growth prediction
indicates that machine learning could be introduced as an
effective tool to monitor or stimulate algal growth, inform light
management, and guide cultivation system design.

Machine learning-informed semi-continuous algal cultivation
sustains high biomass productivity. The ability to predict algal
growth is critical to algal cultivation management and design. For
example, given light conditions over the coming days and current
cell concentrations, growth prediction could indicate the optimal
harvest time and how much to harvest for maximum productivity
and profit. Empowered by machine learning models, we were able
to simulate cyanobacterial growth under different constant light
conditions by combining the LDPM and GRM (Fig. 2a, See
details in Supplementary Method 6). As shown in Supplementary
Fig. 4a-f, the simulated growth was very close to measured
growth at all tested conditions, with a lowest R? value of 0.996.
We also tested if the machine learning models could simulate
cyanobacterial growth under changing light conditions. As shown
in Supplementary Fig. 4g, growth predictions under changing
light achieved an R? score of 0.978 compared to measured results,
validating the accuracy of the model. Overall, the results
demonstrated that machine learning models could accurately
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simulate cyanobacterial cell growth at both constant and chan-
ging light conditions. The machine learning model is thus more
versatile compared to traditional mathematical models (e.g.,
models based on the Monod equation) and does not require prior
knowledge of growth characteristics. Moreover, the machine
learning-based growth simulation is highly flexible and could
expand to integrate other growth impacting factors such as
temperature and nutrients. Such integration might be too com-
plicated for traditional mathematical models, especially under
changing light.

Growth simulation could inform cyanobacterial cultivation to
overcome mutual shading. Although many strategies (e.g., illumina-
tion optimization, increasing bubbling rates) have been proposed to
overcome light limitation, their productivity improvements were
limited and not sustainable?!2324, Empowered by growth prediction,
we propose a type of algal cultivation system where cells are removed
periodically or continuously to maintain the cultivation with near-
optimal light availability and growth rates. The continuous or semi-
continuous cultivation systems could minimize the impact of mutual
shading and improve growth potential for cyanobacteria. As a
demonstration, we simplified the SAC system with a harvesting
interval of 24 h and used machine learning-based growth simulations
to predict the best initial inoculum concentration. We evaluated
biomass productivity predictions from different initial cell concen-
trations under low light (107 umol m—2s~1), high light (714 pmol
m~2s71), and changing light (178-714-178 pmolm~—2s71). As
shown in Fig. 2e-g, the simulated productivities showed similar
trends to measured productivities at all tested light conditions.
Measured productivities from constant light conditions were very
close to predicted productivities (Fig. 2e—g), while minor deviations
were observed under changing light (Fig. 2g). The deviation could
have resulted from slower growth due to adaptation to light changes.
Overall, the results reveal the effectiveness of machine learning-based

3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27665-y

. . . — Low Light
Inp |ght Program or Real-time Light Monitoring 2.001 N
> ]
S LDPM Prediction e ERRCI
s ~ 4
= Current 3 5 1.50 *
3 Light \ £ ©.1.251
: > -H %
B g b
- en ati §_ g 0501
E r oot ‘e = 'g '
3 row © a 0257
——
0.00°
1 2 3 4
GRM Prediction
Cc f High Light
§ 6 ’% gg‘ *
ey ke .0
b £39] 530,
(o]
S gw 44 =25
& ! =201
S " T 2 3] >
. — g 2 1s)
OQ = ////'//'///X L x >
B o predicion | T — 2 5 1.04
10 K Rea\-t\me/\;p/ — o 05
-1t - S LA a P21
O% 70 40 60 80 1 2 3 4 5 6 0.0 1 > 3 4
o] T‘m;;mmtm Measured Growth Rate
cuttivatl wGrowth 0 i) . .
== T Zow d (x10 == g/L/h) g Changing Light
) %00(.115 2.5 ;2 51
So.15 6 g5 80 15100 — o
£ 0.1 Time (h) ? 20 E 20
30. Calculation - 2.07 N <.U4
o o 25 50 75100 W E @]
) @ o =
Qo) & Z1.0,
€ 1.0 3]
b4 2 —4— FB 3 0.5
m 0.5
05| + % g

2 34 56 7
Time (day)

1 2 3 4
Initial OD

Fig. 2 Growth rate prediction, growth simulation and semi-continuous algal cultivation (SAC). Overview of workflows for growth simulation and GRM
training are shown in a and b, respectively. The growth simulation could be achieved by integrating the LDPM (Green) with an additional growth rate
prediction model, GRM (a, Blue). The LDP features predicted by LDPM and corresponding growth rates calculated from growth curves were used as
features and labels, respectively, in the GRM training (b). The accuracy of GRM prediction was evaluated and shown in ¢, with an R? score of 0.992,
indicating high precision. The cyanobacterial growth (biomass production) with different initial OD under low light (e), high light (f), and changing light
(g) were simulated (red lines) and monitored (blue columns). The similar trends between simulations and measurements verified the accuracy of the
simulation and legitimized the simulation as a reliable tool to inform algal cultivation system development. After light condition optimization, biomass
productivity from machine learning-informed SAC was evaluated, with fed-batch as control. The biomass productivities sustain at around 2 g/L/day over
7 days in SAC (d, SC) while they decreased over time in fed-batch (d, FB). Original data points of bar figures (e-g) are shown on the plot with blue stars.
Data are presented as mean values *standard deviations (n = 3 independent samples with three technical replicates). Source data are provided as a Source

Data file.

growth simulation in guiding cultivation platform advancement. In
real-world applications, in addition to predicting optimal initial cell
concentration, growth simulation could determine when and how
much algal biomass to harvest under certain growth conditions. The
prediction could be used in combination with economic analysis for
maximized profits.

Despite higher biomass productivity using optimal initial cell
concentrations in SAC, the growth rate of UTEX 2973 was less
than previously reported2>=27. In order to further improve
biomass productivity, we optimized light conditions with double
light sources at 574 pmol m~2s~! on opposite sides of PBRs. To
determine the best initial cell concentration for the updated SAC,
we adapted the machine learning models for double-light growth
simulation. The prediction suggested that ODj;, ~2.3 is the

optimal initial cell concentration for SAC (Supplementary Fig. 5).
Thereafter, we set up the SAC under double light sources at
574 umol m~2s~1 and maintain the initial OD;3, at ~2.3 after
each harvest to allow the cells to grow back from an optimal
starting concentration.

Cyanobacterial biomass productivities in SAC were evaluated
with fed-batch cultivation (FB) as a control. The growth of
cyanobacteria in fed-batch and SAC is shown in Supplementary
Fig. 4h. As shown in Fig. 2d, biomass productivities in SAC were
maintained at ~2.0 g/L/day over 7 days, while productivity in fed-
batch cultivation decreased to 0.4 g/L/day on day 7 (Fig. 2d). The
results suggest that machine learning-informed SAC effectively
overcomes growth limitations caused by mutual shading and
significantly improves and sustains biomass productivity. Such
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Fig. 3 Limonene production enables cell aggregation in UTEX 2973. Cell aggregation is observed in L524 (b) but not in wild-type (WT, a). Quantification
analysis suggests 91% of L524 cells are found in aggregates (c). Such aggregation could result from limonene production in L524. Indeed, putative
limonene droplets are found on L524 cells (e) but not in wild-type (d) as shown by TEM images, and limonene production is only detected in L524 at
~1.4 mg/L/day/OD30 in normalized productivity by GC-MS (f). SRS chemical imaging was used to identify chemical compositions in the droplets. A
significantly higher limonene signal is found in L524 (h) compared to wild-type (g). This observation is more evident at the L524 cell surface, where
limonene droplets appear to attach to the outer cell surface. In L524 cell aggregation, the surface-attaching limonene appears to form inter-cell junctions
bridging cells (i). Moreover, cell surface hydrophobicity was measured by BATH assay. The significantly reduced fluorescence signal in L524 (j) suggests
over 40% of L524 cells bind to hydrophobic hydrocarbon, confirming their increased cell surface hydrophobicity. Scale bar, 2 um. N.D. not detected.
**p = 8.4 x 1010 (two-tailed Student's t test, n = 3 independent samples with three technical replicates). Original data points of bar figures (¢, f, and j) are
shown on the plot with blue dots. Data are presented as mean values tstandard deviations (n =3 independent samples with three technical replicates).

Source data are provided as a Source Data file.

success could encourage further development in artificial
intelligence to guide algal cultivation system design, refine
cultivation management, and automate process operation.

Altering cell surface hydrophobicity to achieve efficient cell
aggregation. Despite the potential of SAC, its feasibility depends
heavily on cost-effective harvesting, a major challenge in algal
biofuel. Sedimentation or auto-flocculation represents an ideal
method for cyanobacterial biomass harvesting’=>, but auto-
flocculation and sedimentation without chemical or micro-
organism additions remain challenging for single-cell algae.
According to Stokes’ Law, sedimentation rate is determined by
the size and density of particles®. UTEX 2973 cells contain around
42.8% protein, 36.5% carbohydrates, and only 11.2 % lipid. Due
to the high carbohydrate content (average density ~1500 kg/m3),
high protein content (average density around 1300 kg/m3), and
low lipid content (average density around 860 kg/m3) of UTEX
2973 cells?, they should be dense enough for sedimentation in
water (~1000 kg/m3). We suspected that auto-flocculation or
sedimentation of UTEX 2973 could be achieved by increasing
particle size via cell aggregation.

One approach to achieve cell aggregation is to increase cell
surface hydrophobicity to promote cell-to-cell self-adhesion?8.
We hypothesized that engineering hydrophobic molecule pro-
duction could increase cell hydrophobicity and drive cell
aggregation for sedimentation. To test this hypothesis, we
overexpressed a limonene synthase in UTEX 2973 to produce
limonene, a strong hydrophobic terpene that can be excreted
from cyanobacterial cells?*-31. The strain was named L524. A cell
aggregation study showed that aggregation occurred in L524
(Fig. 3b), but not in the wild-type (Fig. 3a). Quantitative analysis

demonstrated that 91% of L524 cells aggregated after 30 min
(Fig. 3¢).

To further understand if the aggregation resulted from
limonene production, we observed L524 cells under Transmission
Electron Microscopy (TEM) and verified the limonene produc-
tion by gas chromatography-mass spectrometry (GC-MS).
Putative limonene droplets were found on L524 cells (Fig. 3e)
but not on wild-type cells (Fig. 3d). The formation of the droplets
might be a process for limonene to secrete from cells. Indeed,
limonene production was detected by GC-MS in L524 at ~1.4 mg/
L/day/ODy;, (Fig. 3f).

To further verify the accumulation of limonene in L524 cells,
stimulated Raman scattering (SRS) microscopy was used to
visualize limonene distribution in cyanobacterial cells3>33. As
shown in Fig. 3g-i, the weak signal from wild-type cells (Fig. 3g)
can be considered background since limonene production was
not detected by GC-MS in the wild-type (Fig. 3f). By contrast,
strong limonene signals were observed in L524 cells, primarily
presenting as droplets (Fig. 3h). These results support the
hypothesis that droplets found on the L524 cell surface by TEM
were composed of limonene. More importantly, SRS imaging on
L524 aggregates showed the presence of limonene at cell junctions
(Fig. 3i), indicating the significant role of limonene droplets in
mediating aggregation.

Limonene could promote aggregation in three ways. First,
hydrophobic limonene molecules could directly increase cell
surface hydrophobicity, which was supported by a bacterial
adherence to hydrocarbon (BATH) assay>*. While almost all
wild-type cells stayed in the aqueous phase in the assay, over 40%
L524 cells adhered to hydrocarbon as demonstrated by reduced
chlorophyll fluorescence in the aqueous phase (Fig. 3j). Such
hydrophobicity increases could be the driving force for cell
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Fig. 4 Evaluation of Aggregation-based sedimentation (ABS). L524 cells after 1-h sedimentation are shown in a, with wild-type as control. By monitoring
the sedimentation process, we found L524 cells started to settle within 5 min and over 75% cells were settled after 15 min (b), suggesting the high settling
velocity of ABS. Vertical cell concentration analysis suggests that 85% and 93% cells settled to the bottom of the harvesting vessel (20 cm in depth) within
30 min and 6 h, respectively (b). Moreover, the biomass concentration at the bottom reaches 357 OD (139.2 g/L), which delivers 14% solids content as an
output for ABS (c). Original data points of bar figures (b, ¢) are shown on the plot with red (0.5 h) or blue (6 h) stars. Data are presented as mean
values tstandard deviations (n =3 independent samples with two technical replicates). Source data are provided as a Source Data file.

aggregation. Second, once cells are close enough, droplets on cell
surfaces could fuse to further enhance cell-to-cell adherence
(Fig. 3i). Third, while a uniform negatively charged cell surface is
critical to maintaining cell suspension®3°, the neutral limonene
could disrupt cell surface charge and contribute to aggregation.
Moreover, the unique ‘smooth’ cell surface of UTEX 2973 might
also promote aggregation in combination with the hydrophobic
interaction of limonene production. Unlike other cyanobacteria,
pili rarely form on the UTEX 2973 cell surface (Supplementary
Fig. 6), presumably due to the early termination of the pilN
protein3, The flatter cell surface of UTEX 2973 allows limonene
droplets among different cells to interact with one another more
easily compared to strains like PCC 7942 (Supplementary Fig. 6).
Together, limonene production and the smooth cell surface might
have enabled the engineered cells to aggregate due to hydro-
phobic interaction in a water environment.

Aggregation-based sedimentation for efficient and cost-
effective harvesting. To investigate if limonene-induced aggre-
gation could enable efficient UTEX 2973 cell sedimentation, we
monitored the Aggregation-Based Sedimentation (ABS) process
of L524 cells (Fig. 4a, b). ABS started within 5 min in L524, with
over 75% of cells settled after only 15 min (Fig. 4b). A short video
is provided in Supplementary Movie 1 to show the first 7 min of a
mini-scale ABS. Moreover, 85% and 93% of cells settled to the
bottom of the collecting vessel (20 cm in depth) within 0.5 and
6 h, respectively (Fig. 4c). The results highlight the high recovery
rate and settling velocity of ABS. A major disadvantage of algal
sedimentation or auto-flocculation is the low solids concentration
of the output, typically between 0.5% and 3%?>. In contrast, the
cell concentration in ABS outputs reached 139.2 g/L, leading to
about 14% solids content. The high solid content could result
from the hydrophobic effects of limonene. More importantly, no
significant differences were found between the growth of the
wild-type and L524, suggesting that the limonene-induced ABS is
physically prevented by air/CO, bubbling during cultivation
(Supplementary Fig. 7). Overall, we demonstrated a harvest
method through manipulating cell surface hydrophobicity. ABS is
a cost-effective strategy with high recovery rates, sedimentation
velocity, and solid content in the output. ABS could enable a
sustainable and cost-effective SAC.

Biomass and limonene yields achieved from the sustainable
SAC. Machine learning-informed SAC and ABS can be integrated
for sustainable biofuel production, as shown in Fig. 5a. Besides
triggering ABS for cost-effective SAC, limonene could also
serve as a secondary bioproduct due to its high value and
potential application in fragrance, food, and pharmaceutical

industries3”7-3%. Moreover, due to its high energy density, limo-
nene has been regarded as a ‘drop-in’ fuel amenable to aviation
and diesel applications?%4%41, Thus, L1524 could co-produce
limonene and glycogen-rich biomass*? from SAC. We evaluated
L524 limonene and biomass productivities/yields in SAC com-
pared to batch and fed-batch cultivations. In batch cultivation,
L524 produced 11.2 mg/L limonene and 3.7 g/L biomass in 7 days
(Fig. 5b, ¢). The limonene and biomass accumulations drastically
slowed after day 2, indicating growth limitations caused by
nutrient depletion (Fig. 5b, ¢). The limonene and biomass yields
increased to 25.8 mg/L and 6.9 g/L, respectively, in 7 days with
fed-batch cultivation, which removed the nutrient limitation
(Fig. 5b, c). Despite the significant increases, limonene and bio-
mass productivities still gradually decreased over time, suggesting
that mutual shading became a limiting factor at high cell con-
centration (Fig. 5b-d). In contrast, by overcoming mutual shad-
ing, the SAC sustained near-linear limonene and biomass
accumulations of ~5mg/L/day of limonene and 2.2 g/L/day of
biomass (Fig. 5b, c). The sustained high productivity resulted in
50.0 mg/L of limonene and 23.4 g/L of biomass over 11 days
(Fig. 5b, ¢).

Limonene production by L524 from SAC surpassed previously
reported yields as shown in Table 1. The high daily productivity
could be attributed to the optimal light availability and the high
photosynthetic capacity of UTEX 29732627, More importantly,
the high yields highlight the strength of SAC in maintaining algal
bioproduction at optimal rates over an extended period. A
detailed comparison of productivity on the seventh day showed
an ~6-fold difference in limonene productivity between SAC and
batch cultivation. Similarly, Table 2 compares biomass produc-
tion in relevant studies using PBRs. Although one study showed
higher algal biomass productivity, the study was carried out in
shaking flasks with very small volume and the addition of costly
Vitamin 12 (thus not included in the comparison)*3. We have
achieved comparable biomass productivity with cultivation
systems that are 20-times larger in volumes than the study.
Overall, this study presented significant improvements in algal
bioproduction by machine learning-informed SAC, where mutual
shading has been overcome and harvesting costs substantially
reduced by synthetic biology-enabled ABS.

Scaling-up SAC with a pond system. We further validated the
potential of SAC with a 30-litre raceway pond system. We first
adapted the machine learning models (LDPM and GRM) for a
pond system to guide the cultivation design. Both models showed
high prediction accuracy. The LDPM achieved an overall R? score
of 0.986 (Fig. 6b) and pixel-by-pixel analysis suggested the LDP
prediction was reasonably good at all pixels, with a minimal R?
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Fig. 5 Sustainable and higher limonene and biomass productivities achieved in SAC. a Concept figure shows the integration of machine learning-
informed SAC and ABS for biofuel production. By overcoming light limitation, SAC (SC) shows sustainable limonene and biomass production, maintaining
productivities at around 5 mg/L/day and about 2.2 g/L/day for limonene and biomass, respectively (SC, b, ¢). By contrast, both limonene and biomass
production in batch cultivation (BA) reach plateau at day 2 due to nutrient depletion (BA, b, €). With fed-batch, limonene, and biomass production are
enhanced but eventually flattened due to light limitation (FB, b, ¢). The growth of cyanobacteria with batch (BA), fed-batch (FB), and SAC (SC) are shown
in d. Data are presented as mean values *standard deviations (n = 3 independent samples). Source data are provided as a Source Data file.

Table 1 Recent publications about limonene production in cyanobacteria.

Strain Productivity (mg/L/d) Yield (mg/L) Time (d) Ref.
Anabaena PCC 7120 0.1 0.2 2 54
Synechococcus PCC 7942 0.82 2.52 5 29
Synechocystis PCC 6803 N.A. 6.7 7 31
Synechococcus PCC 7002 1.52 4 4 30
Synechococcus UTEX 2973 5.0 50 n This study

N.A. not applicable.
aThe value is estimated from the figures.

Table 2 Select publications on cyanobacterial biomass production with PBRs.

Strain PBR size (cm) Yield (g/L) Time (d) Ref.

S. elongatus PCC 11801 32 2b 3 55

S. elongatus PCC 11802 32 3b 5 56

S. elongatus BDU 130192 3 2 4 57

S. elongatus PCC 7942 3a 1.9b 5 42

S. elongatus UTEX 2973 32 2.3b 5 42

S. elongatus UTEX 2973 10x5 23.4 n This study

aDiameter of the cylinder PBRs.
bThe value is estimated from the figures.
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Fig. 6 Scaling-up of SAC with a pond system. The pond system design is shown in a. b and ¢ show the prediction evaluation of the adapted LDPM for the

pond system. The LDPM achieved an overall R? score of 0.986 (b) and pixel-

by-pixel analysis suggested that prediction at all pixels were reasonably good,

with a minimal R2 score of 0.943 (c). d, biomass production with the outdoor pond system. e, prediction evaluation of the GRM adapted for a pond system.
f, machine learning-based growth simulation (red line) suggested that setting the initial cell concentration to around 0.4 g/L achieves optimal biomass
productivity under the growth condition mimicking Texas Summer, which was well supported by the measured results (blue bars). Original data points are

shown on the plot with blue dots. Error bands represent standard deviations

score of 0.943 (Fig. 6¢). The GRM prediction also achieved an R?
score of 0.980 (Fig. 6e). Like the PBR system, we employed the
machine learning models to predict optimal initial cell con-
centrations for the pond SAC system. The growth simulation
suggested that setting initial cell concentration to around 0.4 g/L
delivers the highest biomass productivity under the growth con-
dition mimicking Texas summer (Fig. 6f). Based on the predic-
tion, the experimental results showed that SAC achieved the
highest biomass productivity at 58.1 g/m?/d (Fig. 6f). We noticed
slight differences between the predicted biomass productivity and
measured productivity when initial cell concentrations were
around 0.4 g/L (Fig. 6f). The deviation might result from the
presence of noise in the training data, and/or overfitting in the
models. Future optimization such as removing noise, adding
regulations, and expanding training data could further enhance
the model performance. Overall, our results demonstrated the
application of machine learning models in a pond SAC system.
The success of application in both PBR and pond systems indi-
cates that machine learning-based prediction can be a generalized
method for guiding algal cultivation management and design in
various systems.

Inspired by the high productivity from the indoor pond
system, we further tested biomass productivity of the pond SAC
in real outdoor conditions. The outdoor tests were carried out in
late September 2021 in College Station, Texas, with both ‘partially
sunny’ and ‘mostly sunny’ weather. These conditions represent a
typical fall growth condition. The outdoor cultivation achieved an
average biomass productivity of 43.3 g/m?/d (Fig. 6d), surpassing
the U.S. DOE 2022 target by 1.7 times.

Techno-economic analysis of the pond SAC platform. The
machine learning-informed SAC holds significant economic
potential after being scaled up. Recent efforts to quantify the
economic potential of algal biomass production by the National
Renewable Energy Laboratory (NREL) examined different exist-
ing, well-documented PBR and pond designs across a number of
different configurations*44>. Both studies focused on estimating

8

(n =2 independent samples). Source data are provided as a Source Data file.

the break-even minimum biomass selling price (MBSP), given an
internal rate of return on capital of 10%. Based on the NREL
study, the yearly average of biomass productivity is estimated to
be the productivities achieved in the Spring (MAR, APR, MAY)
and Fall (SEP, OCT, NOV)#4. Following that approach, we esti-
mated the yearly average of biomass productivity for the open
pond system to be 43.3 g/m?/d in the outdoor study and 48.1 g/
m?/d (83.3% of summer productivity) in the indoor mimicking
trial. The ash content of the cyanobacterial biomass was measured
to be 5.5%. At these conditions, the NREL model projects a MBSP
of approximately $281 per ton based on the outdoor trial yield
(Supplementary Fig. 9). By comparison, 2019 state-of-the-art
open pond algal cultivation had an MBSP of ~$1,227 per ton?°.
The categorical cost distribution is shown in Supplementary
Fig. 9.

Furthermore, the limonene produced by L524 has a current
market value of about $5/kg2>40. At this price, the SAC system
proposed here would generate approximately $10.08 of additional
revenue in limonene sales per ton of biomass produced. Such
reductions in MBSP can be readily achieved in PBR systems.
Although limonene collection from open pond systems may not
be cost effective at current productivity levels, limonene-mediated
ABS nonetheless significantly reduces harvesting costs.

Beyond significant improvements in biomass production, the
implementation of ABS in SAC would also markedly reduce
operating costs. ABS (0.1 kWh m~3) could save up to 93% on
energy costs compared to traditional harvesting methods (e.g.,
disc stack centrifugation (1.4 kWhm™3))3, while maintaining
high efficiency and recovery rates. As the dewatering process
accounts for $24.4 per ton of biomass in the current model
(Supplementary Fig. 9), the simplified harvest by ABS would
further significantly reduce the MBSP (however, we have not
adjusted the $281 per ton MBSP generated by the NREL model to
reflect such reductions).

In addition, due to the high glycogen content of UTEX 2973
cells*?, the cyanobacterial biomass could directly feed into
biorefineries for ethanol fermentation without pretreatment as
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described previously#”48. Demand for biomass is not considered
by the NREL model used here, so the additional benefit of
increased willingness-to-pay for biomass from the L524 and SAC
platform is not quantified. While still in the early stages of
development, the SAC platform with the L524 strain appears to
overcome many of the challenges that have long plagued algal
biofuel production.

Together, significant increases in algal productivity and
reductions in operating costs result in a dramatic reduction in
the break-even biomass price relative to prior algal production
systems to below $300 per ton of AFDW. Detailed work must be
done to provide robust cost estimates, but the initial results show
great promise. At the same time, the SAC process would generate
biomass that is significantly less costly to convert to ethanol than
the current most common feedstock (corn), as it would eliminate
the need for costly milling and other pre-treatment prior to
fermentation748,

Discussion

The research has led to several breakthroughs that could have a
profound impact on biomanufacturing, algal bioproduction, and
renewable fuels and products. First, the study is one of the
initiatory to use Artificial Intelligence techniques to guide algal
cultivation design. In particular, the research provided quantita-
tive insights into how light intensities and cell density shape LDPs
and how LDPs, in turn, impact cyanobacterial growth rates. The
integration of LDPM and GRM enables reliable simulation of
growth curves based on initial OD and light intensity. This
knowledge inspired us to develop SAC and precisely define the
optimal initial OD to achieve maximized growth. The high
accuracy, broad prediction range, and superior capacity to handle
the complexity of machine learning models produced broader
adaptability in constant or changing light and in indoor/outdoor
PBRs or pond systems. The principle and design of the study can
be broadly applied to industrial microbiology and biomanu-
facturing. The machine learning models themselves can be
broadly adapted to different set-ups to guide algal cultivation
management and design. The models can be further optimized to
integrate nutrients, temperature, and other factors to achieve even
broader adaptability.

Second, the study achieves aggregation-enabled sedimentation
(ABS) by manipulating cyanobacterial cell hydrophobicity. Self-
sedimentation achieved a high solids load and enabled an efficient
and low-cost harvest method for algal bioproduction, overcoming
a major challenge in the algal industry. Furthermore, the principle
can be used to design ABS in other species for broader bioma-
nufacturing applications.

Third, the study achieved increased yields of biomass, in both
indoor and outdoor systems, in both PBR and pond systems. The
outdoor raceway pond productivity achieved 43.3 g/m?/d, which
surpasses the U.S. DOE 2022 target by 1.7 times. The consistency
of outdoor productivity and indoor estimated productivity
(43.3 g/m?/d vs. 48.1 g/m?/d) again proves the effectiveness and
reliability of the approach in the study. Due to enhanced yields
and reduced operating costs by ABS, SAC holds great promise for
economical algal bioproduction below $300 per ton. Furthermore,
the lower cost of algal biomass enables economically competitive
applications in broader industries, including algal biofuel, animal
feed, food additives, and various speciality products*”->0,

Methods

Strains and growth condition. S. elongatus UTEX 2973 wild-type was kindly gifted
by Dr. Pakrasi from Washington University. Strains were maintained in BG11
(Sigma, C3061) supplemented with 10 mM TES under 50 pmol photons m—2s
illumination at 37 °C. A customized PBR (based on a 1-L Roux bottle) containing
500 ml of media was used for cultivation, with 5% (vol/vol) CO, bubbling from a

-1

stainless-steel aeration stone at a speed of 0.8 L/min. 10 ml of 50x stock media was
fed every 24 h for fed-batch cultivation. For SAC, initial cell concentration was
adjusted to ODy;3 of ~2.3 every 24 h followed by media feeding. The initial OD was
selected based on the machine learning model outcome of optimal starting OD. The
growth temperature of batch cultivation, fed-batch, and SAC was maintained at
37 °C. Artificial light at 574 umol m—2 s~! was applied on two opposite sides of the
PBR, after initial growth with one-side 357 umolm~2s~! and 714 umol m~2 s~ ! at
0-12h and 12-36 h, respectively. A customized pond system was used for scaling-
up of the SAC, shown in Fig. 6a. The circular pond system contained a 6-inch-wide
raceway and an impeller was used to keep the cyanobacterial cells agitated. In all, 30
litres of cyanobacteria (20 cm in height) were cultivated in the pond system with 5%
CO, (vol/vol) bubbling via gas dispersion stones. The growth temperature was
maintained at 40 °C with a water heater. Cell growth and light conditions were
monitored with a turbidity meter (EXcell231, EXNER, with Expert software) and a
light sensor (LS-BTA, Vernier, with Vernier Graphical Analysis software), respec-
tively. In the condition mimicking Texas summer, the pond system was placed in a
growth chamber and the light program was set to 400 umolm~2s~! for 1 h,

800 umolm~2s~! for 1h, 1300 pumol m~2s~! for 1 h, 1500 umol m~2s~! for 10h,
1300 pmol m~2 s~ ! for 1 h, 800 umol m~2s~! for 1 h, and 400 pmol m~2s~! for 1 h
(all light intensities were measured from the pond surface). In both outdoor and
mimicking outdoor conditions, 250 ml water was added to the pond system every
2h to counter evaporation.

Molecular manipulation of cyanobacteria. A construct, pLB524, was used to
create the strain L524 via homologous recombination. To build pLB524, homo-
logous sequences of UTEX 2973 neutral site I and limonene synthase were
amplified from pWX1118% with primer pairs of NS-DS-F/ NS-US-R (Supple-
mentary Table 1). The amplified fragment was then integrated into pBR322 by
Gibson assembly. The assembled pLB524 was transformed into UTEX 2973 by
conjugation?>3, Briefly, cargo E. coli strain containing pLB524 and helper plasmid
PpRL623 was first mixed with a conjugal strain containing pRL443 for 30 min at
37 °C, before mixing with UTEX 2973 cells. The mixture was then incubated on
BG11 + 5% LB plates without antibiotics and then transferred to BG11 plates with
5 pg/ml spectinomycin/streptomycin. Transformants that had been segregated with
increasing antibiotics (5 pug/ml, 10 pg/ml, and 15 pg/ml) for three rounds were
verified by PCR and further confirmed by qPCR with primers provided in Sup-
plementary Table 1.

Microscopy imaging and aggregation evaluation. Cells sampled from cyano-
bacterial culture were adjusted to the same concentrations and transferred to
Eppendorf tubes for aggregation. After 30 min, the tubes were gently vortexed to
suspend pellets (in L524) while minimizing the perturbation for aggregation. The
well-mixed samples were observed under Leica DM6B. For cell aggregation
quantification, the well-mixed samples were counted with a hemocytometer. Cell
aggregation was defined as aggregates with five or more cells. The number of
aggregated L524 cells was estimated by subtracting the number of unaggregated
1524 cells from WT cells. In the transmission electron microscopy (TEM) obser-
vation, cells were negatively stained with 1% uranyl acetate and observed under
JEOL 1200.

Chemical imaging. SRS microscopy developed for plant biomass imaging was used
to perform the chemical imaging®!. A HighQ picoTRAIN (Spectra-Physics) laser
was used to generate 1064 nm (up to 15 W) and 532 nm (up to 9 W) output; both
are pulse trains at 7 ps. The 1064 nm output was used as the SRS Stokes beam. The
532 nm beam was used to pump an APE optic parametric oscillator (Levante
Emerald, APE GmbH, Germany) to produce a tunable wavelength 6 ps pulse train
to be used as the SRS pump beam. The 1064 nm Stokes beam was modulated by an
acoustic optical modulator (3080-122, Crystal Technology) at 10 MHz frequency,
achieving >80% intensity modulation depth. Both the pump and Stokes pulse trains
were combined (1064dcrb, Chroma) and routed to a modified scanner (BX62WI/
FV300, Olympus) attached to an Olympus IX81 microscope. The pump beam
intensity after the sample was collected by a high numeric aperture lens, filtered and
detected by a photodiode. A lock-in amplifier was used to detect the stimulated
Raman loss signal. The Raman frequency of the limonene C = C bond at 1670 cm ™!
that was previously used by other studies®>2°3 was chosen for SRS imaging, which
corresponded to a pump wavelength at 903 nm.

Aggregation-based sedimentation measurement. The efficiency of ABS was
assessed by monitoring the sedimentation process of cyanobacterial cells (OD73, at
10.0) in a harvesting vessel with a 20-cm height. Cell concentrations on the surface
were used to evaluate the sedimentation efficiency. The vertical distribution of
cyanobacteria was evaluated by sampling cells at different depths with a long
glass tip.

BATH assay for cell hydrophobicity measurement. The bacterial adherence to
hydrocarbon (BATH) assay was performed following the protocol developed by
Rosenberg et al.>* with minor modifications. Specifically, 3 ml of cyanobacteria
with OD73 of 0.2 were mixed with 0.12 ml of hexadecane. After phase separation,
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the chlorophyll fluorescence of the cyanobacteria (water phase) was measured to
quantify cells that did not adhere to the hydrocarbon.

Limonene collection and measurement. Limonene was collected with HayeSep
porous polymer (Sigma) absorbent traps and eluted by 1 mL hexane supplemented
with 50 ug/mL cedrene (Sigma) as the internal standard. The concentration of
limonene was quantified by gas chromatography-mass spectrometry (GC-MS)
(Shimadzu Scientific Instruments, Inc.) with a standard curve and normalized with
recovery rates, which was determined by spiking different concentrations of
limonene in 500 mL of UTEX 2973 wild-type cells (Supplementary Fig. 8). The
total limonene yield was calculated by adding yields of each day together.

Biomass productivity measurement. The biomass productivity was measured
with OD;3 and converted to dry cell weight (DCW) with a pre-established cali-
bration (1.0 ODy3, equals approximately 0.39 g DCW L~1). The total biomass
yields were calculated by adding the productivities of each day together. The
biomass productivity from the pond system was calculated by first transforming
the turbidity (Attenuation Unit, AU) to ODy3, with a calibration curve (Supple-
mentary Fig. 10b) and then calculated as described above.

Techno-economic analysis. The techno-economic analysis was based on the algae
farm model presented by NREL#. Similar to the NREL study, we assumed the
yearly biomass productivity to be the same as productivity achieved in Fall and set
it to 43.3 g/m?/d. The 50-acre individual pond size was selected for the analysis and
the pond harvest concentration was set to 0.7 g/L, as the SAC output (with initial
cell concentration of 0.4 g/L) was about 0.7 g/L. The primary, secondary, and
tertiary dewatering outlet concentrations were set to 140 g/L, according to the ABS
output concentration. We set the ash content to 5.5% and used default values for
the rest of the parameters in the analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. Training data for machine learning models are available
at GitHub [https://github.com/joshuayuanlab151/LDPM-and-GRM]. Source data are
provided with this paper.

Code availability

Code used for machine learning models and training data is available at GitHub [https://
github.com/joshuayuanlab151/LDPM-and-GRM]. A stable release is available at Zenodo
[https://zenodo.org/badge/latestdoi/430008654].
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